cs.AI updates on arXiv.org 08月20日
Contextual Attention-Based Multimodal Fusion of LLM and CNN for Sentiment Analysis
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种创新的多模态情感分析方法,结合CNN和LLM技术,在灾害管理中提高危机管理效率,实验结果显示显著提升了分类准确率和F1分数。

arXiv:2508.13196v1 Announce Type: cross Abstract: This paper introduces a novel approach for multimodal sentiment analysis on social media, particularly in the context of natural disasters, where understanding public sentiment is crucial for effective crisis management. Unlike conventional methods that process text and image modalities separately, our approach seamlessly integrates Convolutional Neural Network (CNN) based image analysis with Large Language Model (LLM) based text processing, leveraging Generative Pre-trained Transformer (GPT) and prompt engineering to extract sentiment relevant features from the CrisisMMD dataset. To effectively model intermodal relationships, we introduce a contextual attention mechanism within the fusion process. Leveraging contextual-attention layers, this mechanism effectively captures intermodality interactions, enhancing the model's comprehension of complex relationships between textual and visual data. The deep neural network architecture of our model learns from these fused features, leading to improved accuracy compared to existing baselines. Experimental results demonstrate significant advancements in classifying social media data into informative and noninformative categories across various natural disasters. Our model achieves a notable 2.43% increase in accuracy and 5.18% in F1-score, highlighting its efficacy in processing complex multimodal data. Beyond quantitative metrics, our approach provides deeper insight into the sentiments expressed during crises. The practical implications extend to real time disaster management, where enhanced sentiment analysis can optimize the accuracy of emergency interventions. By bridging the gap between multimodal analysis, LLM powered text understanding, and disaster response, our work presents a promising direction for Artificial Intelligence (AI) driven crisis management solutions. Keywords:

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多模态情感分析 灾害管理 CNN LLM 危机管理
相关文章