cs.AI updates on arXiv.org 08月20日
STPFormer: A State-of-the-Art Pattern-Aware Spatio-Temporal Transformer for Traffic Forecasting
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为STPFormer的时空交通预测模型,通过统一的可解释性表示学习,实现了在时空模式识别上的突破。该模型集成了四个模块,包括时间位置聚合器、空间序列聚合器、时空图匹配器和注意力混合器,在五个真实世界数据集上取得了最先进的性能。

arXiv:2508.13433v1 Announce Type: new Abstract: Spatio-temporal traffic forecasting is challenging due to complex temporal patterns, dynamic spatial structures, and diverse input formats. Although Transformer-based models offer strong global modeling, they often struggle with rigid temporal encoding and weak space-time fusion. We propose STPFormer, a Spatio-Temporal Pattern-Aware Transformer that achieves state-of-the-art performance via unified and interpretable representation learning. It integrates four modules: Temporal Position Aggregator (TPA) for pattern-aware temporal encoding, Spatial Sequence Aggregator (SSA) for sequential spatial learning, Spatial-Temporal Graph Matching (STGM) for cross-domain alignment, and an Attention Mixer for multi-scale fusion. Experiments on five real-world datasets show that STPFormer consistently sets new SOTA results, with ablation and visualizations confirming its effectiveness and generalizability.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时空交通预测 STPFormer Transformer 表示学习
相关文章