cs.AI updates on arXiv.org 08月20日
A Novel Attention-Augmented Wavelet YOLO System for Real-time Brain Vessel Segmentation on Transcranial Color-coded Doppler
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于TCCD的AI自动分割系统,用于Willis环血管实时分割,提高缺血性脑卒中诊断的准确性,有望在临床工作中广泛应用。

arXiv:2508.13875v1 Announce Type: cross Abstract: The Circle of Willis (CoW), vital for ensuring consistent blood flow to the brain, is closely linked to ischemic stroke. Accurate assessment of the CoW is important for identifying individuals at risk and guiding appropriate clinical management. Among existing imaging methods, Transcranial Color-coded Doppler (TCCD) offers unique advantages due to its radiation-free nature, affordability, and accessibility. However, reliable TCCD assessments depend heavily on operator expertise for identifying anatomical landmarks and performing accurate angle correction, which limits its widespread adoption. To address this challenge, we propose an AI-powered, real-time CoW auto-segmentation system capable of efficiently capturing cerebral arteries. No prior studies have explored AI-driven cerebrovascular segmentation using TCCD. In this work, we introduce a novel Attention-Augmented Wavelet YOLO (AAW-YOLO) network tailored for TCCD data, designed to provide real-time guidance for brain vessel segmentation in the CoW. We prospectively collected TCCD data comprising 738 annotated frames and 3,419 labeled artery instances to establish a high-quality dataset for model training and evaluation. The proposed AAW-YOLO demonstrated strong performance in segmenting both ipsilateral and contralateral CoW vessels, achieving an average Dice score of 0.901, IoU of 0.823, precision of 0.882, recall of 0.926, and mAP of 0.953, with a per-frame inference speed of 14.199 ms. This system offers a practical solution to reduce reliance on operator experience in TCCD-based cerebrovascular screening, with potential applications in routine clinical workflows and resource-constrained settings. Future research will explore bilateral modeling and larger-scale validation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI Willis环 脑卒中诊断 TCCD 实时分割
相关文章