cs.AI updates on arXiv.org 08月20日
InPars+: Supercharging Synthetic Data Generation for Information Retrieval Systems
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过利用InPars工具包,对神经信息检索(NIR)的合成查询生成管道进行回顾和扩展,通过对比偏好优化(CPO)和动态提示模板优化,提升查询质量与检索性能,相关代码和模型公开。

arXiv:2508.13930v1 Announce Type: cross Abstract: This work revisits and extends synthetic query generation pipelines for Neural Information Retrieval (NIR) by leveraging the InPars Toolkit, a reproducible, end-to-end framework for generating training data using large language models (LLMs). We first assess the reproducibility of the original InPars, InPars-V2, and Promptagator pipelines on the SciFact benchmark and validate their effectiveness using open-source reranker and generator models. Building on this foundation, we introduce two key extensions to the pipeline: (1) fine-tuning a query generator LLM via Contrastive Preference Optimization (CPO) to improve the signal quality in generated queries, and (2) replacing static prompt templates with dynamic, Chain-of-Thought (CoT) optimized prompts using the DSPy framework. Our results show that both extensions reduce the need for aggressive filtering while improving retrieval performance. All code, models, and synthetic datasets are publicly released to support further research at: \href{https://github.com/danilotpnta/IR2-project}{this https URL}.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经信息检索 合成查询生成 InPars工具包 对比偏好优化 Chain-of-Thought提示
相关文章