cs.AI updates on arXiv.org 08月18日
LETToT: Label-Free Evaluation of Large Language Models On Tourism Using Expert Tree-of-Thought
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于专家思维树的无标注评估框架LETToT,用于评估旅游领域大型语言模型,通过优化专家思维树组件,提升模型在旅游领域的表现。

arXiv:2508.11280v1 Announce Type: cross Abstract: Evaluating large language models (LLMs) in specific domain like tourism remains challenging due to the prohibitive cost of annotated benchmarks and persistent issues like hallucinations. We propose $\textbf{L}$able-Free $\textbf{E}$valuation of LLM on $\textbf{T}$ourism using Expert $\textbf{T}$ree-$\textbf{o}$f-$\textbf{T}$hought (LETToT), a framework that leverages expert-derived reasoning structures-instead of labeled data-to access LLMs in tourism. First, we iteratively refine and validate hierarchical ToT components through alignment with generic quality dimensions and expert feedback. Results demonstrate the effectiveness of our systematically optimized expert ToT with 4.99-14.15\% relative quality gains over baselines. Second, we apply LETToT's optimized expert ToT to evaluate models of varying scales (32B-671B parameters), revealing: (1) Scaling laws persist in specialized domains (DeepSeek-V3 leads), yet reasoning-enhanced smaller models (e.g., DeepSeek-R1-Distill-Llama-70B) close this gap; (2) For sub-72B models, explicit reasoning architectures outperform counterparts in accuracy and conciseness ($p

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 旅游领域 评估框架 无标注数据 专家思维树
相关文章