cs.AI updates on arXiv.org 08月18日
Vision-Language Models display a strong gender bias
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究视觉语言模型中性别关联现象,通过构建数据集和计算图像与文本的关联度,分析视觉语言模型中的性别偏见。

arXiv:2508.11262v1 Announce Type: cross Abstract: Vision-language models (VLM) align images and text in a shared representation space that is useful for retrieval and zero-shot transfer. Yet, this alignment can encode and amplify social stereotypes in subtle ways that are not obvious from standard accuracy metrics. In this study, we test whether the contrastive vision-language encoder exhibits gender-linked associations when it places embeddings of face images near embeddings of short phrases that describe occupations and activities. We assemble a dataset of 220 face photographs split by perceived binary gender and a set of 150 unique statements distributed across six categories covering emotional labor, cognitive labor, domestic labor, technical labor, professional roles, and physical labor. We compute unit-norm image embeddings for every face and unit-norm text embeddings for every statement, then define a statement-level association score as the difference between the mean cosine similarity to the male set and the mean cosine similarity to the female set, where positive values indicate stronger association with the male set and negative values indicate stronger association with the female set. We attach bootstrap confidence intervals by resampling images within each gender group, aggregate by category with a separate bootstrap over statements, and run a label-swap null model that estimates the level of mean absolute association we would expect if no gender structure were present. The outcome is a statement-wise and category-wise map of gender associations in a contrastive vision-language space, accompanied by uncertainty, simple sanity checks, and a robust gender bias evaluation framework.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视觉语言模型 性别关联 数据集分析 模型偏见 视觉文本对齐
相关文章