cs.AI updates on arXiv.org 08月18日
Hallucination in LLM-Based Code Generation: An Automotive Case Study
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究大型语言模型在代码生成中的幻觉现象,通过案例评估不同复杂度的提示在汽车领域的应用,揭示现有模型在语法、引用和API知识方面的不足,强调在安全关键领域如汽车软件系统需要有效缓解技术。

arXiv:2508.11257v1 Announce Type: cross Abstract: Large Language Models (LLMs) have shown significant potential in automating code generation tasks offering new opportunities across software engineering domains. However, their practical application remains limited due to hallucinations - outputs that appear plausible but are factually incorrect, unverifiable or nonsensical. This paper investigates hallucination phenomena in the context of code generation with a specific focus on the automotive domain. A case study is presented that evaluates multiple code LLMs for three different prompting complexities ranging from a minimal one-liner prompt to a prompt with Covesa Vehicle Signal Specifications (VSS) as additional context and finally to a prompt with an additional code skeleton. The evaluation reveals a high frequency of syntax violations, invalid reference errors and API knowledge conflicts in state-of-the-art models GPT-4.1, Codex and GPT-4o. Among the evaluated models, only GPT-4.1 and GPT-4o were able to produce a correct solution when given the most context-rich prompt. Simpler prompting strategies failed to yield a working result, even after multiple refinement iterations. These findings highlight the need for effective mitigation techniques to ensure the safe and reliable use of LLM generated code, especially in safety-critical domains such as automotive software systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 代码生成 幻觉现象 汽车软件 安全关键领域
相关文章