cs.AI updates on arXiv.org 08月18日
How Causal Abstraction Underpins Computational Explanation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨系统内部如何实现特定计算,提出因果抽象理论为理解计算实现提供有益视角。结合深度学习与人工神经网络讨论,分析计算实现与表征的关系,强调在泛化和预测中探讨这些问题的重要性。

arXiv:2508.11214v1 Announce Type: cross Abstract: Explanations of cognitive behavior often appeal to computations over representations. What does it take for a system to implement a given computation over suitable representational vehicles within that system? We argue that the language of causality -- and specifically the theory of causal abstraction -- provides a fruitful lens on this topic. Drawing on current discussions in deep learning with artificial neural networks, we illustrate how classical themes in the philosophy of computation and cognition resurface in contemporary machine learning. We offer an account of computational implementation grounded in causal abstraction, and examine the role for representation in the resulting picture. We argue that these issues are most profitably explored in connection with generalization and prediction.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

因果抽象 计算实现 深度学习 人工神经网络 表征
相关文章