cs.AI updates on arXiv.org 08月18日
From Individual to Multi-Agent Algorithmic Recourse: Minimizing the Welfare Gap via Capacitated Bipartite Matching
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种针对多智能体算法回溯的新框架,通过优化多寻求者和提供者之间的交互,实现社会福利最大化。

arXiv:2508.11070v1 Announce Type: new Abstract: Decision makers are increasingly relying on machine learning in sensitive situations. In such settings, algorithmic recourse aims to provide individuals with actionable and minimally costly steps to reverse unfavorable AI-driven decisions. While existing research predominantly focuses on single-individual (i.e., seeker) and single-model (i.e., provider) scenarios, real-world applications often involve multiple interacting stakeholders. Optimizing outcomes for seekers under an individual welfare approach overlooks the inherently multi-agent nature of real-world systems, where individuals interact and compete for limited resources. To address this, we introduce a novel framework for multi-agent algorithmic recourse that accounts for multiple recourse seekers and recourse providers. We model this many-to-many interaction as a capacitated weighted bipartite matching problem, where matches are guided by both recourse cost and provider capacity. Edge weights, reflecting recourse costs, are optimized for social welfare while quantifying the welfare gap between individual welfare and this collectively feasible outcome. We propose a three-layer optimization framework: (1) basic capacitated matching, (2) optimal capacity redistribution to minimize the welfare gap, and (3) cost-aware optimization balancing welfare maximization with capacity adjustment costs. Experimental validation on synthetic and real-world datasets demonstrates that our framework enables the many-to-many algorithmic recourse to achieve near-optimal welfare with minimum modification in system settings. This work extends algorithmic recourse from individual recommendations to system-level design, providing a tractable path toward higher social welfare while maintaining individual actionability.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

算法回溯 多智能体 社会福利 优化框架 机器学习
相关文章