cs.AI updates on arXiv.org 08月18日
Learn to optimize for automatic proton PBS treatment planning for H&N cancers
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于数据驱动的逆优化器,将其集成到基于PPO的自动治疗计划框架中,以提高H&N癌症质子治疗计划的效果和效率。

arXiv:2508.11085v1 Announce Type: new Abstract: Proton PBS treatment planning for H&N cancers involves numerous conflicting objectives, requiring significant effort from human planners to balance and satisfy multiple clinical goals during planning. To achieve this, experience-demanding objective parameter adjustment and computationally expensive inverse optimization are performed iteratively. Extensive efforts have been made to automatically adjust objective parameters, but the most time-consuming component, i.e., inverse optimization, still relies heavily on theory-driven approaches. We propose a data-driven inverse optimizer and integrate it into a PPO-based automatic treatment planning framework to automatically generate high-quality plans within a clinical acceptable planning time. The inverse optimizer is a L2O method that predicts update steps by learning from the task-specific data distribution. For the first time, we integrate techniques designed for long-context processing, originally developed for LLMs, into a Transformer-based L2O framework to address the scalability issue of existing L2O methods. The PPO framework functions as an outer-loop virtual planner, autonomously adjusting objective parameters through a policy network, and the dose predictor is used to initialize objective parameters. The inner-loop L2O inverse optimizer computes machine-deliverable MU values based on objectives refined by the PPO policy network. 97 patients are collected in this study, and compared with L-BFGSB, our L2O-based inverse optimizer improves the effectiveness and efficiency by 22.97% and 36.41%, respectively. In conjunction with the PPO-based learned virtual planner, plans generated by our framework within an average of 2.55 hours show improved or comparable OAR sparing with superior target coverage for patients with different prescription dose levels, number of target volumes, beam angles, etc., compared with human-generated plans.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据驱动 逆优化器 H&N癌症 治疗计划 PPO
相关文章