cs.AI updates on arXiv.org 08月15日
Retrieval-Augmented Prompt for OOD Detection
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出RAP,一种基于检索增强的OOD检测方法,通过检索外部知识来增强语义监督,提高模型在OOD检测上的性能,实验证明其在多个基准测试中达到最优水平。

arXiv:2508.10556v1 Announce Type: cross Abstract: Out-of-Distribution (OOD) detection is crucial for the reliable deployment of machine learning models in-the-wild, enabling accurate identification of test samples that differ from the training data distribution. Existing methods rely on auxiliary outlier samples or in-distribution (ID) data to generate outlier information for training, but due to limited outliers and their mismatch with real test OOD samples, they often fail to provide sufficient semantic supervision, leading to suboptimal performance. To address this, we propose a novel OOD detection method called Retrieval-Augmented Prompt (RAP). RAP augments a pre-trained vision-language model's prompts by retrieving external knowledge, offering enhanced semantic supervision for OOD detection. During training, RAP retrieves descriptive words for outliers based on joint similarity with external textual knowledge and uses them to augment the model's OOD prompts. During testing, RAP dynamically updates OOD prompts in real-time based on the encountered OOD samples, enabling the model to rapidly adapt to the test environment. Our extensive experiments demonstrate that RAP achieves state-of-the-art performance on large-scale OOD detection benchmarks. For example, in 1-shot OOD detection on the ImageNet-1k dataset, RAP reduces the average FPR95 by 7.05% and improves the AUROC by 1.71% compared to previous methods. Additionally, comprehensive ablation studies validate the effectiveness of each module and the underlying motivations of our approach.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器学习 OOD检测 RAP模型
相关文章