cs.AI updates on arXiv.org 08月15日
Contrastive ECOC: Learning Output Codes for Adversarial Defense
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出基于对比学习的三种自动编码学习模型,用于多类分类,并通过四个数据集验证了其在对抗攻击中的优越鲁棒性。

arXiv:2508.10491v1 Announce Type: cross Abstract: Although one-hot encoding is commonly used for multiclass classification, it is not always the most effective encoding mechanism. Error Correcting Output Codes (ECOC) address multiclass classification by mapping each class to a unique codeword used as a label. Traditional ECOC methods rely on manually designed or randomly generated codebooks, which are labor-intensive and may yield suboptimal, dataset-agnostic results. This paper introduces three models for automated codebook learning based on contrastive learning, allowing codebooks to be learned directly and adaptively from data. Across four datasets, our proposed models demonstrate superior robustness to adversarial attacks compared to two baselines. The source is available at https://github.com/YuChou20/Automated-Codebook-Learning-with-Error-Correcting-Output-Code-Technique.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多类分类 对比学习 ECOC编码 自动学习 对抗攻击
相关文章