cs.AI updates on arXiv.org 08月15日
Using Large Language Models to Measure Symptom Severity in Patients At Risk for Schizophrenia
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

研究利用大型语言模型从临床访谈记录中预测BPRS评分,评估其准确性,以改进和标准化高风险患者的评估。

arXiv:2508.10226v1 Announce Type: cross Abstract: Patients who are at clinical high risk (CHR) for schizophrenia need close monitoring of their symptoms to inform appropriate treatments. The Brief Psychiatric Rating Scale (BPRS) is a validated, commonly used research tool for measuring symptoms in patients with schizophrenia and other psychotic disorders; however, it is not commonly used in clinical practice as it requires a lengthy structured interview. Here, we utilize large language models (LLMs) to predict BPRS scores from clinical interview transcripts in 409 CHR patients from the Accelerating Medicines Partnership Schizophrenia (AMP-SCZ) cohort. Despite the interviews not being specifically structured to measure the BPRS, the zero-shot performance of the LLM predictions compared to the true assessment (median concordance: 0.84, ICC: 0.73) approaches human inter- and intra-rater reliability. We further demonstrate that LLMs have substantial potential to improve and standardize the assessment of CHR patients via their accuracy in assessing the BPRS in foreign languages (median concordance: 0.88, ICC: 0.70), and integrating longitudinal information in a one-shot or few-shot learning approach.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 精神分裂症 BPRS评分 临床评估 语言模型
相关文章