cs.AI updates on arXiv.org 08月15日
Ultra-High-Definition Reference-Based Landmark Image Super-Resolution with Generative Diffusion Prior
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出TriFlowSR,一种基于参考图像的超分辨率框架,有效利用高分辨率参考图像的语义和纹理信息,并引入Landmark-4K数据集,实现超高清地标图像的高质量超分辨率。实验结果表明,该方法在超高清地标场景下优于现有方法。

arXiv:2508.10779v1 Announce Type: cross Abstract: Reference-based Image Super-Resolution (RefSR) aims to restore a low-resolution (LR) image by utilizing the semantic and texture information from an additional reference high-resolution (reference HR) image. Existing diffusion-based RefSR methods are typically built upon ControlNet, which struggles to effectively align the information between the LR image and the reference HR image. Moreover, current RefSR datasets suffer from limited resolution and poor image quality, resulting in the reference images lacking sufficient fine-grained details to support high-quality restoration. To overcome the limitations above, we propose TriFlowSR, a novel framework that explicitly achieves pattern matching between the LR image and the reference HR image. Meanwhile, we introduce Landmark-4K, the first RefSR dataset for Ultra-High-Definition (UHD) landmark scenarios. Considering the UHD scenarios with real-world degradation, in TriFlowSR, we design a Reference Matching Strategy to effectively match the LR image with the reference HR image. Experimental results show that our approach can better utilize the semantic and texture information of the reference HR image compared to previous methods. To the best of our knowledge, we propose the first diffusion-based RefSR pipeline for ultra-high definition landmark scenarios under real-world degradation. Our code and model will be available at https://github.com/nkicsl/TriFlowSR.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图像超分辨率 参考图像 TriFlowSR Landmark-4K UHD地标
相关文章