cs.AI updates on arXiv.org 08月15日
Natively Trainable Sparse Attention for Hierarchical Point Cloud Datasets
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出结合Erwin架构与Native Sparse Attention机制,提升大规模物理系统Transformer模型的效率与感受野,有效解决二次关注复杂度问题,并在物理科学三个数据集上实现与原Erwin模型相媲美的性能。

arXiv:2508.10758v1 Announce Type: cross Abstract: Unlocking the potential of transformers on datasets of large physical systems depends on overcoming the quadratic scaling of the attention mechanism. This work explores combining the Erwin architecture with the Native Sparse Attention (NSA) mechanism to improve the efficiency and receptive field of transformer models for large-scale physical systems, addressing the challenge of quadratic attention complexity. We adapt the NSA mechanism for non-sequential data, implement the Erwin NSA model, and evaluate it on three datasets from the physical sciences -- cosmology simulations, molecular dynamics, and air pressure modeling -- achieving performance that matches or exceeds that of the original Erwin model. Additionally, we reproduce the experimental results from the Erwin paper to validate their implementation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Transformer 物理系统 Native Sparse Attention 模型优化 数据集
相关文章