cs.AI updates on arXiv.org 08月15日
Learning from Natural Language Feedback for Personalized Question Answering
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出VAC框架,以自然语言反馈替代标量奖励,优化个性化问答系统,在LaMP-QA基准测试中表现优异。

arXiv:2508.10695v1 Announce Type: cross Abstract: Personalization is crucial for enhancing both the effectiveness and user satisfaction of language technologies, particularly in information-seeking tasks like question answering. Current approaches for personalizing large language models (LLMs) often rely on retrieval-augmented generation (RAG), followed by reinforcement learning with scalar reward signals to teach models how to use retrieved personal context. We believe that these scalar rewards sometimes provide weak, non-instructive feedback, limiting learning efficiency and personalization quality. We introduce VAC, a novel framework for personalized response generation that replaces scalar rewards with natural language feedback (NLF) that are generated conditioned on the user profiles and the question narratives. NLF serves as a rich and actionable supervision signal, allowing the policy model to iteratively refine its outputs and internalize effective personalization strategies. Training alternates between optimizing the feedback model and fine-tuning the policy model on the improved responses, resulting in a policy model that no longer requires feedback at inference. Evaluation on the LaMP-QA benchmark that consists of three diverse domains demonstrates consistent and significant improvements over the state-of-the-art results. Human evaluations further confirm the superior quality of the generated responses. These results demonstrate that NLF provides more effective signals for optimizing personalized question answering.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

个性化问答 自然语言反馈 LLM优化
相关文章