cs.AI updates on arXiv.org 08月14日
On Negative-aware Preference Optimization for Recommendation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出NAPO框架,通过负样本共享和动态奖励调整,有效提升LLM推荐系统的准确性和减少流行度偏差。

arXiv:2508.09653v1 Announce Type: cross Abstract: Recommendation systems leverage user interaction data to suggest relevant items while filtering out irrelevant (negative) ones. The rise of large language models (LLMs) has garnered increasing attention for their potential in recommendation tasks. However, existing methods for optimizing LLM-based recommenders face challenges in effectively utilizing negative samples. Simply integrating large numbers of negative samples can improve ranking accuracy and mitigate popularity bias but often leads to increased computational overhead and memory costs. Additionally, current approaches fail to account for the varying informativeness of negative samples, leading to suboptimal optimization performance. To address these issues, we propose NAPO (\textbf{N}egative-\textbf{A}ware \textbf{P}reference \textbf{O}ptimization), an enhanced framework for preference optimization in LLM-based recommendation. NAPO introduces two key innovations: (1) in-batch negative sharing, which expands the pool of negative samples without additional memory overhead, and (2) dynamic reward margin adjustment, which adapts model updates based on the confidence of negative samples. Extensive experiments on three public datasets demonstrate that NAPO outperforms existing methods in both recommendation accuracy and popularity bias reduction.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

推荐系统 LLM优化 负样本处理 偏好优化 模型调整
相关文章