cs.AI updates on arXiv.org 08月14日
A Unified Contrastive-Generative Framework for Time Series Classification
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为CoGenT的新框架,通过联合对比生成优化统一了自监督学习中的对比方法和生成方法,有效克服了传统方法的局限性,并在多个时间序列数据集上取得了显著效果。

arXiv:2508.09451v1 Announce Type: cross Abstract: Self-supervised learning (SSL) for multivariate time series mainly includes two paradigms: contrastive methods that excel at instance discrimination and generative approaches that model data distributions. While effective individually, their complementary potential remains unexplored. We propose a Contrastive Generative Time series framework (CoGenT), the first framework to unify these paradigms through joint contrastive-generative optimization. CoGenT addresses fundamental limitations of both approaches: it overcomes contrastive learning's sensitivity to high intra-class similarity in temporal data while reducing generative methods' dependence on large datasets. We evaluate CoGenT on six diverse time series datasets. The results show consistent improvements, with up to 59.2% and 14.27% F1 gains over standalone SimCLR and MAE, respectively. Our analysis reveals that the hybrid objective preserves discriminative power while acquiring generative robustness. These findings establish a foundation for hybrid SSL in temporal domains. We will release the code shortly.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

自监督学习 时间序列 CoGenT框架 对比生成 数据集
相关文章