cs.AI updates on arXiv.org 08月14日
Shadow in the Cache: Unveiling and Mitigating Privacy Risks of KV-cache in LLM Inference
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文分析了LLM推理中KV缓存隐私风险,提出了KV-Cloak防御机制,有效保护隐私,且不降低模型准确性和性能。

arXiv:2508.09442v1 Announce Type: cross Abstract: The Key-Value (KV) cache, which stores intermediate attention computations (Key and Value pairs) to avoid redundant calculations, is a fundamental mechanism for accelerating Large Language Model (LLM) inference. However, this efficiency optimization introduces significant yet underexplored privacy risks. This paper provides the first comprehensive analysis of these vulnerabilities, demonstrating that an attacker can reconstruct sensitive user inputs directly from the KV-cache. We design and implement three distinct attack vectors: a direct Inversion Attack, a more broadly applicable and potent Collision Attack, and a semantic-based Injection Attack. These methods demonstrate the practicality and severity of KV-cache privacy leakage issues. To mitigate this, we propose KV-Cloak, a novel, lightweight, and efficient defense mechanism. KV-Cloak uses a reversible matrix-based obfuscation scheme, combined with operator fusion, to secure the KV-cache. Our extensive experiments show that KV-Cloak effectively thwarts all proposed attacks, reducing reconstruction quality to random noise. Crucially, it achieves this robust security with virtually no degradation in model accuracy and minimal performance overhead, offering a practical solution for trustworthy LLM deployment.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM推理 KV缓存 隐私风险 防御机制 KV-Cloak
相关文章