cs.AI updates on arXiv.org 08月14日
Synaptic Pruning: A Biological Inspiration for Deep Learning Regularization
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于绝对值大小调整的神经修剪方法,模拟生物大脑的突触修剪过程,提升人工神经网络训练效率,实验表明该方法在多个时间序列预测模型上均有显著提升。

arXiv:2508.09330v1 Announce Type: cross Abstract: Synaptic pruning in biological brains removes weak connections to improve efficiency. In contrast, dropout regularization in artificial neural networks randomly deactivates neurons without considering activity-dependent pruning. We propose a magnitude-based synaptic pruning method that better reflects biology by progressively removing low-importance connections during training. Integrated directly into the training loop as a dropout replacement, our approach computes weight importance from absolute magnitudes across layers and applies a cubic schedule to gradually increase global sparsity. At fixed intervals, pruning masks permanently remove low-importance weights while maintaining gradient flow for active ones, eliminating the need for separate pruning and fine-tuning phases. Experiments on multiple time series forecasting models including RNN, LSTM, and Patch Time Series Transformer across four datasets show consistent gains. Our method ranked best overall, with statistically significant improvements confirmed by Friedman tests (p

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经修剪 人工智能 神经网络 生物灵感 时间序列预测
相关文章