arXiv:2508.09330v1 Announce Type: cross Abstract: Synaptic pruning in biological brains removes weak connections to improve efficiency. In contrast, dropout regularization in artificial neural networks randomly deactivates neurons without considering activity-dependent pruning. We propose a magnitude-based synaptic pruning method that better reflects biology by progressively removing low-importance connections during training. Integrated directly into the training loop as a dropout replacement, our approach computes weight importance from absolute magnitudes across layers and applies a cubic schedule to gradually increase global sparsity. At fixed intervals, pruning masks permanently remove low-importance weights while maintaining gradient flow for active ones, eliminating the need for separate pruning and fine-tuning phases. Experiments on multiple time series forecasting models including RNN, LSTM, and Patch Time Series Transformer across four datasets show consistent gains. Our method ranked best overall, with statistically significant improvements confirmed by Friedman tests (p
