cs.AI updates on arXiv.org 08月14日
Fake-Mamba: Real-Time Speech Deepfake Detection Using Bidirectional Mamba as Self-Attention's Alternative
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了 Fake-Mamba 框架,结合 XLSR 和双向 Mamba 进行深度伪造语音检测,实现超越现有SOTA模型的性能,并保持实时性。

arXiv:2508.09294v1 Announce Type: cross Abstract: Advances in speech synthesis intensify security threats, motivating real-time deepfake detection research. We investigate whether bidirectional Mamba can serve as a competitive alternative to Self-Attention in detecting synthetic speech. Our solution, Fake-Mamba, integrates an XLSR front-end with bidirectional Mamba to capture both local and global artifacts. Our core innovation introduces three efficient encoders: TransBiMamba, ConBiMamba, and PN-BiMamba. Leveraging XLSR's rich linguistic representations, PN-BiMamba can effectively capture the subtle cues of synthetic speech. Evaluated on ASVspoof 21 LA, 21 DF, and In-The-Wild benchmarks, Fake-Mamba achieves 0.97%, 1.74%, and 5.85% EER, respectively, representing substantial relative gains over SOTA models XLSR-Conformer and XLSR-Mamba. The framework maintains real-time inference across utterance lengths, demonstrating strong generalization and practical viability. The code is available at https://github.com/xuanxixi/Fake-Mamba.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度伪造检测 语音合成安全 深度学习 XLSR Mamba
相关文章