cs.AI updates on arXiv.org 08月14日
NEFMind: Parameter-Efficient Fine-Tuning of Open-Source LLMs for Telecom APIs Automation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍NEFMind框架,利用开源LLMs高效优化5G服务架构API管理,实现85%通信开销降低,API调用识别准确率高达98-100%,为电信基础设施部署提供高效解决方案。

arXiv:2508.09240v1 Announce Type: cross Abstract: The use of Service-Based Architecture in modern telecommunications has exponentially increased Network Functions (NFs) and Application Programming Interfaces (APIs), creating substantial operational complexities in service discovery and management. We introduce \textit{NEFMind}, a framework leveraging parameter-efficient fine-tuning of open-source Large Language Models (LLMs) to address these challenges. It integrates three core components: synthetic dataset generation from Network Exposure Function (NEF) API specifications, model optimization through Quantized-Low-Rank Adaptation, and performance evaluation via GPT-4 Ref Score and BertScore metrics. Targeting 5G Service-Based Architecture APIs, our approach achieves 85% reduction in communication overhead compared to manual discovery methods. Experimental validation using the open-source Phi-2 model demonstrates exceptional API call identification performance at 98-100% accuracy. The fine-tuned Phi-2 model delivers performance comparable to significantly larger models like GPT-4 while maintaining computational efficiency for telecommunications infrastructure deployment. These findings validate domain-specific, parameter-efficient LLM strategies for managing complex API ecosystems in next-generation telecommunications networks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

NEFMind 5G服务架构 API管理 LLM优化 电信基础设施
相关文章