cs.AI updates on arXiv.org 08月14日
Diffusion LLMs Can Do Faster-Than-AR Inference via Discrete Diffusion Forcing
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出离散扩散强制(D2F)策略,提升文本生成模型dLLM的推理速度,实现比现有AR LLMs更快的解码,同时保持输出质量。

arXiv:2508.09192v1 Announce Type: cross Abstract: Diffusion Large Language Models (dLLMs) have emerged as a promising alternative to autoregressive (AR) LLMs for text generation, with the potential to decode multiple tokens in a single iteration. However, none of the existing open-source dLLMs have achieved superior inference speed over AR LLMs of similar size. This paper breaks this barrier based on a simple and effective strategy named discrete diffusion forcing (D2F). D2F equips dLLMs with two key capabilities: (1) block-wise autoregressive generation to enable KV cache utilization; (2) prediction of following tokens without requiring completion of prior blocks for inter-block parallel decoding. In this way, the vanilla dLLMs are refurbished into an AR-diffusion hybrid paradigm for efficient inference. D2F can be implemented with an asymmetric distillation process based on pre-trained dLLMs. We further propose a pipelined parallel decoding algorithm, which enables a trade-off between efficiency and efficacy. Empirically, D2F dLLMs achieve more than $\mathbf{2.5\times}$ inference speed than LLaMA3 and Qwen2.5 on GSM8K. Compared to vanilla dLLMs like LLaDA and Dream, the acceleration can be more than $\mathbf{50\times}$ while maintaining comparable output quality. The code is available at https://github.com/zhijie-group/Discrete-Diffusion-Forcing.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

dLLM 推理速度 文本生成
相关文章