cs.AI updates on arXiv.org 08月14日
Prototype Training with Dual Pseudo-Inverse and Optimized Hidden Activations
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为Proto-PINV+H的快速训练范式,通过结合闭式权重计算和基于梯度的优化,实现了在MNIST和Fashion-MNIST数据集上达到高精度和高效能的训练。

arXiv:2508.09787v1 Announce Type: cross Abstract: We present Proto-PINV+H, a fast training paradigm that combines closed-form weight computation with gradient-based optimisation of a small set of synthetic inputs, soft labels, and-crucially-hidden activations. At each iteration we recompute all weight matrices in closed form via two (or more) ridge-regularised pseudo-inverse solves, while updating only the prototypes with Adam. The trainable degrees of freedom are thus shifted from weight space to data/activation space. On MNIST (60k train, 10k test) and Fashion-MNIST (60k train, 10k test), our method reaches 97.8% and 89.3% test accuracy on the official 10k test sets, respectively, in 3.9s--4.5s using approximately 130k trainable parameters and only 250 epochs on an RTX 5060 (16GB). We provide a multi-layer extension (optimised activations at each hidden stage), learnable ridge parameters, optional PCA/PLS projections, and theory linking the condition number of prototype matrices to generalisation. The approach yields favourable accuracy--speed--size trade-offs against ELM, random-feature ridge, and shallow MLPs trained by back-propagation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

训练范式 闭式权重计算 梯度优化
相关文章