cs.AI updates on arXiv.org 08月14日
User-Intent-Driven Semantic Communication via Adaptive Deep Understanding
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种用户意图驱动的语义通信系统,通过多模态大模型和注意力模块,实现深度意图理解和适应不同信道条件,实验表明在特定信道下性能优于DeepJSCC。

arXiv:2508.05884v1 Announce Type: cross Abstract: Semantic communication focuses on transmitting task-relevant semantic information, aiming for intent-oriented communication. While existing systems improve efficiency by extracting key semantics, they still fail to deeply understand and generalize users' real intentions. To overcome this, we propose a user-intention-driven semantic communication system that interprets diverse abstract intents. First, we integrate a multi-modal large model as semantic knowledge base to generate user-intention prior. Next, a mask-guided attention module is proposed to effectively highlight critical semantic regions. Further, a channel state awareness module ensures adaptive, robust transmission across varying channel conditions. Extensive experiments demonstrate that our system achieves deep intent understanding and outperforms DeepJSCC, e.g., under a Rayleigh channel at an SNR of 5 dB, it achieves improvements of 8%, 6%, and 19% in PSNR, SSIM, and LPIPS, respectively.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语义通信 用户意图 信道适应 性能提升
相关文章