Ars Technica - All content 08月13日
Study: Social media probably can’t be fixed
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

社交媒体平台,本应促进思想交流,却常沦为制造回音室和加剧极化的温床。研究发现,问题根源并非算法或用户偏好,而是社交媒体本身的设计架构。少数高影响力用户占据主导,算法为追求高参与度而放大负面情绪,导致极端声音泛滥。现有干预措施效果甚微,除非进行根本性结构重塑,否则社交媒体的恶性循环难以打破。研究通过AI模拟用户行为,证实了这些负面动态的固有性。

🎯 社交媒体的失灵并非源于算法或用户心理,而是其固有的结构性设计。平台倾向于制造“回音室”效应,而非促进健康的思想交流,导致用户视野受限。

👑 少数高知名度用户占据了绝大部分的关注度和影响力,这种“注意力不平等”加剧了信息传播的偏差,使得普通用户的声音难以被听见。

🔊 旨在最大化用户参与度的算法,反而放大了负面情绪和冲突,使得极端和煽动性的言论更容易获得传播,进一步加剧了社会的两极分化。

🔬 通过结合代理人模型和大型语言模型(LLMs)进行模拟研究发现,即使在没有预设算法干预的情况下,社交媒体的负面动态也会自然涌现,证明了问题的根源在于基础架构。

💡 现有的平台级干预策略,如调整算法或内容呈现方式,难以从根本上解决问题。研究者认为,除非进行颠覆性的结构性重新设计,否则社交媒体的负面循环将难以避免。

It's no secret that much of social media has become profoundly dysfunctional. Rather than bringing us together into one utopian public square and fostering a healthy exchange of ideas, these platforms too often create filter bubbles or echo chambers. A small number of high-profile users garner the lion's share of attention and influence, and the algorithms designed to maximize engagement end up merely amplifying outrage and conflict, ensuring the dominance of the loudest and most extreme users—thereby increasing polarization even more.

Numerous platform-level intervention strategies have been proposed to combat these issues, but according to a preprint posted to the physics arXiv, none of them are likely to be effective. And it's not the fault of much-hated algorithms, non-chronological feeds, or our human proclivity for seeking out negativity. Rather, the dynamics that give rise to all those negative outcomes are structurally embedded in the very architecture of social media. So we're probably doomed to endless toxic feedback loops unless someone hits upon a brilliant fundamental redesign that manages to change those dynamics.

Co-authors Petter Törnberg and Maik Larooij of the University of Amsterdam wanted to learn more about the mechanisms that give rise to the worst aspects of social media: the partisan echo chambers, the concentration of influence among a small group of elite users (attention inequality), and the amplification of the most extreme divisive voices. So they combined standard agent-based modeling with large language models (LLMs), essentially creating little AI personas to simulate online social media behavior. "What we found is that we didn't need to put any algorithms in, we didn't need to massage the model," Törnberg told Ars. "It just came out of the baseline model, all of these dynamics."

Read full article

Comments

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

社交媒体 算法 极化 回音室效应 结构性问题
相关文章