cs.AI updates on arXiv.org 08月13日
M3-Net: A Cost-Effective Graph-Free MLP-Based Model for Traffic Prediction
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于MLP的M3-Net模型,用于解决交通预测中的复杂时空依赖问题,通过时间序列和时空嵌入处理特征,并引入MLP-Mixer架构,实验证明其在预测性能和部署效率上具有优势。

arXiv:2508.08543v1 Announce Type: cross Abstract: Achieving accurate traffic prediction is a fundamental but crucial task in the development of current intelligent transportation systems.Most of the mainstream methods that have made breakthroughs in traffic prediction rely on spatio-temporal graph neural networks, spatio-temporal attention mechanisms, etc. The main challenges of the existing deep learning approaches are that they either depend on a complete traffic network structure or require intricate model designs to capture complex spatio-temporal dependencies. These limitations pose significant challenges for the efficient deployment and operation of deep learning models on large-scale datasets. To address these challenges, we propose a cost-effective graph-free Multilayer Perceptron (MLP) based model M3-Net for traffic prediction. Our proposed model not only employs time series and spatio-temporal embeddings for efficient feature processing but also first introduces a novel MLP-Mixer architecture with a mixture of experts (MoE) mechanism. Extensive experiments conducted on multiple real datasets demonstrate the superiority of the proposed model in terms of prediction performance and lightweight deployment.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

交通预测 深度学习 MLP-Mixer
相关文章