cs.AI updates on arXiv.org 08月13日
LLM-Driven Adaptive 6G-Ready Wireless Body Area Networks: Survey and Framework
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文综述了WBAN架构、路由策略和安全机制,提出基于大型语言模型的自适应WBAN框架,旨在解决适应性、能源效率和量子安全等问题,为下一代移动健康应用提供超可靠、安全和自我优化的解决方案。

arXiv:2508.08535v1 Announce Type: cross Abstract: Wireless Body Area Networks (WBANs) enable continuous monitoring of physiological signals for applications ranging from chronic disease management to emergency response. Recent advances in 6G communications, post-quantum cryptography, and energy harvesting have the potential to enhance WBAN performance. However, integrating these technologies into a unified, adaptive system remains a challenge. This paper surveys some of the most well-known Wireless Body Area Network (WBAN) architectures, routing strategies, and security mechanisms, identifying key gaps in adaptability, energy efficiency, and quantum-resistant security. We propose a novel Large Language Model-driven adaptive WBAN framework in which a Large Language Model acts as a cognitive control plane, coordinating routing, physical layer selection, micro-energy harvesting, and post-quantum security in real time. Our review highlights the limitations of current heuristic-based designs and outlines a research agenda for resource-constrained, 6G-ready medical systems. This approach aims to enable ultra-reliable, secure, and self-optimizing WBANs for next-generation mobile health applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

WBAN 自适应框架 大型语言模型 安全机制 移动健康
相关文章