cs.AI updates on arXiv.org 08月13日
BELLA: Black box model Explanations by Local Linear Approximations
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为BELLA的回归模型后验解释方法,旨在提高黑盒模型决策过程的可理解性。与传统方法依赖合成数据不同,BELLA通过线性模型在特征空间中提供解释,确保解释的准确性、简洁性、普适性和鲁棒性。

arXiv:2305.11311v3 Announce Type: replace-cross Abstract: Understanding the decision-making process of black-box models has become not just a legal requirement, but also an additional way to assess their performance. However, the state of the art post-hoc explanation approaches for regression models rely on synthetic data generation, which introduces uncertainty and can hurt the reliability of the explanations. Furthermore, they tend to produce explanations that apply to only very few data points. In this paper, we present BELLA, a deterministic model-agnostic post-hoc approach for explaining the individual predictions of regression black-box models. BELLA provides explanations in the form of a linear model trained in the feature space. BELLA maximizes the size of the neighborhood to which the linear model applies so that the explanations are accurate, simple, general, and robust.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

黑盒模型 后验解释 回归模型 线性模型 解释性
相关文章