cs.AI updates on arXiv.org 08月13日
VISOR: Visual Input-based Steering for Output Redirection in Vision-Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章介绍了一种名为VISOR的新技术,通过优化视觉输入实现VLMs的行为控制,提高输出重定向的效果,同时揭示视觉引导攻击的潜在风险。

arXiv:2508.08521v1 Announce Type: cross Abstract: Vision Language Models (VLMs) are increasingly being used in a broad range of applications, bringing their security and behavioral control to the forefront. While existing approaches for behavioral control or output redirection, like system prompting in VLMs, are easily detectable and often ineffective, activation-based steering vectors require invasive runtime access to model internals--incompatible with API-based services and closed-source deployments. We introduce VISOR (Visual Input-based Steering for Output Redirection), a novel method that achieves sophisticated behavioral control through optimized visual inputs alone. By crafting universal steering images that induce target activation patterns, VISOR enables practical deployment across all VLM serving modalities while remaining imperceptible compared to explicit textual instructions. We validate VISOR on LLaVA-1.5-7B across three critical alignment tasks: refusal, sycophancy and survival instinct. A single 150KB steering image matches steering vector performance within 1-2% for positive behavioral shifts while dramatically exceeding it for negative steering--achieving up to 25% shifts from baseline compared to steering vectors' modest changes. Unlike system prompting (3-4% shifts), VISOR provides robust bidirectional control while maintaining 99.9% performance on 14,000 unrelated MMLU tasks. Beyond eliminating runtime overhead and model access requirements, VISOR exposes a critical security vulnerability: adversaries can achieve sophisticated behavioral manipulation through visual channels alone, bypassing text-based defenses. Our work fundamentally re-imagines multimodal model control and highlights the urgent need for defenses against visual steering attacks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视觉语言模型 行为控制 输出重定向 安全漏洞 视觉引导攻击
相关文章