cs.AI updates on arXiv.org 08月13日
System~2 Reasoning for Human--AI Alignment: Generality and Adaptivity via ARC-AGI
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了基于Transformer的模型在系统2推理中的不足,包括组合泛化和新规则适应性问题,并提出改进方案,包括符号表示管道、交互式反馈推理循环和测试时任务增强。

arXiv:2410.07866v4 Announce Type: replace Abstract: Despite their broad applicability, transformer-based models still fall short in System~2 reasoning, lacking the generality and adaptivity needed for human--AI alignment. We examine weaknesses on ARC-AGI tasks, revealing gaps in compositional generalization and novel-rule adaptation, and argue that closing these gaps requires overhauling the reasoning pipeline and its evaluation. We propose three research axes: (1) Symbolic representation pipeline for compositional generality, (2) Interactive feedback-driven reasoning loop for adaptivity, and (3) Test-time task augmentation balancing both qualities. Finally, we demonstrate how ARC-AGI's evaluation suite can be adapted to track progress in symbolic generality, feedback-driven adaptivity, and task-level robustness, thereby guiding future work on robust human--AI alignment.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Transformer模型 系统2推理 组合泛化 新规则适应 改进方案
相关文章