cs.AI updates on arXiv.org 08月13日
Attacks and Defenses Against LLM Fingerprinting
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究LLM指纹识别,从攻击与防御角度出发,采用强化学习优化查询选择,并运用语义保留的输出过滤技术提高防御效果。

arXiv:2508.09021v1 Announce Type: cross Abstract: As large language models are increasingly deployed in sensitive environments, fingerprinting attacks pose significant privacy and security risks. We present a study of LLM fingerprinting from both offensive and defensive perspectives. Our attack methodology uses reinforcement learning to automatically optimize query selection, achieving better fingerprinting accuracy with only 3 queries compared to randomly selecting 3 queries from the same pool. Our defensive approach employs semantic-preserving output filtering through a secondary LLM to obfuscate model identity while maintaining semantic integrity. The defensive method reduces fingerprinting accuracy across tested models while preserving output quality. These contributions show the potential to improve fingerprinting tools capabilities while providing practical mitigation strategies against fingerprinting attacks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM指纹识别 强化学习 语义保留 攻击防御
相关文章