cs.AI updates on arXiv.org 08月13日
MinionsLLM: a Task-adaptive Framework For The Training and Control of Multi-Agent Systems Through Natural Language
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出MinionsLLM框架,将LLMs与行为树和形式语法结合,实现自然语言控制多智能体系统。通过两种数据集生成方法微调LLMs,提高语法有效性和语义任务相关性。实验表明,小模型微调效果最佳,框架资源开源以支持研究。

arXiv:2508.08283v1 Announce Type: cross Abstract: This paper presents MinionsLLM, a novel framework that integrates Large Language Models (LLMs) with Behavior Trees (BTs) and Formal Grammars to enable natural language control of multi-agent systems within arbitrary, user-defined environments. MinionsLLM provides standardized interfaces for defining environments, agents, and behavioral primitives, and introduces two synthetic dataset generation methods (Method A and Method B) to fine-tune LLMs for improved syntactic validity and semantic task relevance. We validate our approach using Google's Gemma 3 model family at three parameter scales (1B, 4B, and 12B) and demonstrate substantial gains: Method B increases syntactic validity to 92.6% and achieves a mean task performance improvement of 33% over baseline. Notably, our experiments show that smaller models benefit most from fine-tuning, suggesting promising directions for deploying compact, locally hosted LLMs in resource-constrained multi-agent control scenarios. The framework and all resources are released open-source to support reproducibility and future research.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MinionsLLM LLM 多智能体系统 行为树 形式语法
相关文章