cs.AI updates on arXiv.org 08月13日
Multi-grained spatial-temporal feature complementarity for accurate online cellular traffic prediction
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于多粒度时空特征互补的在线蜂窝流量预测方法(MGSTC),有效解决现有方法对流量特征忽视及概念漂移问题,通过多粒度时空特征实现高精度预测。

arXiv:2508.08281v1 Announce Type: cross Abstract: Knowledge discovered from telecom data can facilitate proactive understanding of network dynamics and user behaviors, which in turn empowers service providers to optimize cellular traffic scheduling and resource allocation. Nevertheless, the telecom industry still heavily relies on manual expert intervention. Existing studies have been focused on exhaustively explore the spatial-temporal correlations. However, they often overlook the underlying characteristics of cellular traffic, which are shaped by the sporadic and bursty nature of telecom services. Additionally, concept drift creates substantial obstacles to maintaining satisfactory accuracy in continuous cellular forecasting tasks. To resolve these problems, we put forward an online cellular traffic prediction method grounded in Multi-Grained Spatial-Temporal feature Complementarity (MGSTC). The proposed method is devised to achieve high-precision predictions in practical continuous forecasting scenarios. Concretely, MGSTC segments historical data into chunks and employs the coarse-grained temporal attention to offer a trend reference for the prediction horizon. Subsequently, fine-grained spatial attention is utilized to capture detailed correlations among network elements, which enables localized refinement of the established trend. The complementarity of these multi-grained spatial-temporal features facilitates the efficient transmission of valuable information. To accommodate continuous forecasting needs, we implement an online learning strategy that can detect concept drift in real-time and promptly switch to the appropriate parameter update stage. Experiments carried out on four real-world datasets demonstrate that MGSTC outperforms eleven state-of-the-art baselines consistently.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

流量预测 MGSTC 在线学习 时空特征 概念漂移
相关文章