cs.AI updates on arXiv.org 08月13日
XFMNet: Decoding Cross-Site and Nonstationary Water Patterns via Stepwise Multimodal Fusion for Long-Term Water Quality Forecasting
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章介绍了XFMNet,一种用于水质预测的多模态融合网络,通过融合遥感降水图像和自适应分解,有效应对水质预测中的复杂周期性、非平稳性和突变性。

arXiv:2508.08279v1 Announce Type: cross Abstract: Long-term time-series forecasting is critical for environmental monitoring, yet water quality prediction remains challenging due to complex periodicity, nonstationarity, and abrupt fluctuations induced by ecological factors. These challenges are further amplified in multi-site scenarios that require simultaneous modeling of temporal and spatial dynamics. To tackle this, we introduce XFMNet, a stepwise multimodal fusion network that integrates remote sensing precipitation imagery to provide spatial and environmental context in river networks. XFMNet first aligns temporal resolutions between water quality series and remote sensing inputs via adaptive downsampling, followed by locally adaptive decomposition to disentangle trend and cycle components. A cross-attention gated fusion module dynamically integrates temporal patterns with spatial and ecological cues, enhancing robustness to nonstationarity and site-specific anomalies. Through progressive and recursive fusion, XFMNet captures both long-term trends and short-term fluctuations. Extensive experiments on real-world datasets demonstrate substantial improvements over state-of-the-art baselines, highlighting the effectiveness of XFMNet for spatially distributed time series prediction.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

水质预测 多模态融合 XFMNet 遥感图像 时间序列预测
相关文章