cs.AI updates on arXiv.org 08月13日
A Dual-Axis Taxonomy of Knowledge Editing for LLMs: From Mechanisms to Functions
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型知识编辑的方法与挑战,提出了一种基于功能的新分类法,并分析了不同机制在不同知识类型上的应用。

arXiv:2508.08795v1 Announce Type: new Abstract: Large language models (LLMs) acquire vast knowledge from large text corpora, but this information can become outdated or inaccurate. Since retraining is computationally expensive, knowledge editing offers an efficient alternative -- modifying internal knowledge without full retraining. These methods aim to update facts precisely while preserving the model's overall capabilities. While existing surveys focus on the mechanism of editing (e.g., parameter changes vs. external memory), they often overlook the function of the knowledge being edited. This survey introduces a novel, complementary function-based taxonomy to provide a more holistic view. We examine how different mechanisms apply to various knowledge types -- factual, temporal, conceptual, commonsense, and social -- highlighting how editing effectiveness depends on the nature of the target knowledge. By organizing our review along these two axes, we map the current landscape, outline the strengths and limitations of existing methods, define the problem formally, survey evaluation tasks and datasets, and conclude with open challenges and future directions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 知识编辑 方法与挑战
相关文章