cs.AI updates on arXiv.org 08月12日
Extracting Overlapping Microservices from Monolithic Code via Deep Semantic Embeddings and Graph Neural Network-Based Soft Clustering
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出Mo2oM框架,将微服务提取视为软聚类问题,有效降低服务间耦合和接口数量,提升软件系统结构模块化、服务大小平衡等指标。

arXiv:2508.07486v1 Announce Type: cross Abstract: Modern software systems are increasingly shifting from monolithic architectures to microservices to enhance scalability, maintainability, and deployment flexibility. Existing microservice extraction methods typically rely on hard clustering, assigning each software component to a single microservice. This approach often increases inter-service coupling and reduces intra-service cohesion. We propose Mo2oM (Monolithic to Overlapping Microservices), a framework that formulates microservice extraction as a soft clustering problem, allowing components to belong probabilistically to multiple microservices. This approach is inspired by expert-driven decompositions, where practitioners intentionally replicate certain software components across services to reduce communication overhead. Mo2oM combines deep semantic embeddings with structural dependencies extracted from methodcall graphs to capture both functional and architectural relationships. A graph neural network-based soft clustering algorithm then generates the final set of microservices. We evaluate Mo2oM on four open-source monolithic benchmarks and compare it against eight state-of-the-art baselines. Our results demonstrate that Mo2oM achieves improvements of up to 40.97% in structural modularity (balancing cohesion and coupling), 58% in inter-service call percentage (communication overhead), 26.16% in interface number (modularity and decoupling), and 38.96% in non-extreme distribution (service size balance) across all benchmarks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

微服务 软件架构 聚类算法
相关文章