cs.AI updates on arXiv.org 08月12日
Lightning Prediction under Uncertainty: DeepLight with Hazy Loss
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出DeepLight,一种基于深度学习的雷电预测新架构,通过多源气象数据和双编码器架构,提高雷电预测的准确性和效率,有效减少经济损失。

arXiv:2508.07428v1 Announce Type: cross Abstract: Lightning, a common feature of severe meteorological conditions, poses significant risks, from direct human injuries to substantial economic losses. These risks are further exacerbated by climate change. Early and accurate prediction of lightning would enable preventive measures to safeguard people, protect property, and minimize economic losses. In this paper, we present DeepLight, a novel deep learning architecture for predicting lightning occurrences. Existing prediction models face several critical limitations: they often struggle to capture the dynamic spatial context and inherent uncertainty of lightning events, underutilize key observational data, such as radar reflectivity and cloud properties, and rely heavily on Numerical Weather Prediction (NWP) systems, which are both computationally expensive and highly sensitive to parameter settings. To overcome these challenges, DeepLight leverages multi-source meteorological data, including radar reflectivity, cloud properties, and historical lightning occurrences through a dual-encoder architecture. By employing multi-branch convolution techniques, it dynamically captures spatial correlations across varying extents. Furthermore, its novel Hazy Loss function explicitly addresses the spatio-temporal uncertainty of lightning by penalizing deviations based on proximity to true events, enabling the model to better learn patterns amidst randomness. Extensive experiments show that DeepLight improves the Equitable Threat Score (ETS) by 18%-30% over state-of-the-art methods, establishing it as a robust solution for lightning prediction.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

雷电预测 深度学习 气象数据
相关文章