cs.AI updates on arXiv.org 08月12日
Sparse Probabilistic Graph Circuits
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种新的稀疏图生成模型(SPGCs),在保持精确推理能力的同时,降低计算复杂度,提高内存效率和推理速度,为图分析难题提供解决方案。

arXiv:2508.07763v1 Announce Type: cross Abstract: Deep generative models (DGMs) for graphs achieve impressively high expressive power thanks to very efficient and scalable neural networks. However, these networks contain non-linearities that prevent analytical computation of many standard probabilistic inference queries, i.e., these DGMs are considered \emph{intractable}. While recently proposed Probabilistic Graph Circuits (PGCs) address this issue by enabling \emph{tractable} probabilistic inference, they operate on dense graph representations with $\mathcal{O}(n^2)$ complexity for graphs with $n$ nodes and \emph{$m$ edges}. To address this scalability issue, we introduce Sparse PGCs, a new class of tractable generative models that operate directly on sparse graph representation, reducing the complexity to $\mathcal{O}(n + m)$, which is particularly beneficial for $m \ll n^2$. In the context of de novo drug design, we empirically demonstrate that SPGCs retain exact inference capabilities, improve memory efficiency and inference speed, and match the performance of intractable DGMs in key metrics.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图生成模型 稀疏图 概率推理 计算效率 药物设计
相关文章