cs.AI updates on arXiv.org 08月12日
CognitiveArm: Enabling Real-Time EEG-Controlled Prosthetic Arm Using Embodied Machine Learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为CognitiveArm的脑控假肢系统,该系统利用边缘AI硬件实现实时EEG信号处理,通过深度学习模型压缩技术优化模型性能,支持语音指令,实现高效、精确的假肢控制。

arXiv:2508.07731v1 Announce Type: cross Abstract: Efficient control of prosthetic limbs via non-invasive brain-computer interfaces (BCIs) requires advanced EEG processing, including pre-filtering, feature extraction, and action prediction, performed in real time on edge AI hardware. Achieving this on resource-constrained devices presents challenges in balancing model complexity, computational efficiency, and latency. We present CognitiveArm, an EEG-driven, brain-controlled prosthetic system implemented on embedded AI hardware, achieving real-time operation without compromising accuracy. The system integrates BrainFlow, an open-source library for EEG data acquisition and streaming, with optimized deep learning (DL) models for precise brain signal classification. Using evolutionary search, we identify Pareto-optimal DL configurations through hyperparameter tuning, optimizer analysis, and window selection, analyzed individually and in ensemble configurations. We apply model compression techniques such as pruning and quantization to optimize models for embedded deployment, balancing efficiency and accuracy. We collected an EEG dataset and designed an annotation pipeline enabling precise labeling of brain signals corresponding to specific intended actions, forming the basis for training our optimized DL models. CognitiveArm also supports voice commands for seamless mode switching, enabling control of the prosthetic arm's 3 degrees of freedom (DoF). Running entirely on embedded hardware, it ensures low latency and real-time responsiveness. A full-scale prototype, interfaced with the OpenBCI UltraCortex Mark IV EEG headset, achieved up to 90% accuracy in classifying three core actions (left, right, idle). Voice integration enables multiplexed, variable movement for everyday tasks (e.g., handshake, cup picking), enhancing real-world performance and demonstrating CognitiveArm's potential for advanced prosthetic control.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

脑机接口 假肢控制 深度学习 边缘计算 实时响应
相关文章