cs.AI updates on arXiv.org 08月12日
AGIC: Attention-Guided Image Captioning to Improve Caption Relevance
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为Attention-Guided Image Captioning(AGIC)的图像描述生成方法,通过在特征空间中增强显著视觉区域,结合确定性及概率采样策略,在Flickr8k和Flickr30k数据集上实现了高效、准确的图像描述生成。

arXiv:2508.06853v1 Announce Type: cross Abstract: Despite significant progress in image captioning, generating accurate and descriptive captions remains a long-standing challenge. In this study, we propose Attention-Guided Image Captioning (AGIC), which amplifies salient visual regions directly in the feature space to guide caption generation. We further introduce a hybrid decoding strategy that combines deterministic and probabilistic sampling to balance fluency and diversity. To evaluate AGIC, we conduct extensive experiments on the Flickr8k and Flickr30k datasets. The results show that AGIC matches or surpasses several state-of-the-art models while achieving faster inference. Moreover, AGIC demonstrates strong performance across multiple evaluation metrics, offering a scalable and interpretable solution for image captioning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图像描述 AGIC 特征空间 混合解码
相关文章