cs.AI updates on arXiv.org 08月12日
Zero-Direction Probing: A Linear-Algebraic Framework for Deep Analysis of Large-Language-Model Drift
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出Zero-Direction Probing(ZDP)理论框架,无需任务标签或输出评估即可检测transformer激活的模型漂移,并推导出相应的SNL指标,为模型漂移提供可测试的保障。

arXiv:2508.06776v1 Announce Type: cross Abstract: We present Zero-Direction Probing (ZDP), a theory-only framework for detecting model drift from null directions of transformer activations without task labels or output evaluations. Under assumptions A1--A6, we prove: (i) the Variance--Leak Theorem, (ii) Fisher Null-Conservation, (iii) a Rank--Leak bound for low-rank updates, and (iv) a logarithmic-regret guarantee for online null-space trackers. We derive a Spectral Null-Leakage (SNL) metric with non-asymptotic tail bounds and a concentration inequality, yielding a-priori thresholds for drift under a Gaussian null model. These results show that monitoring right/left null spaces of layer activations and their Fisher geometry provides concrete, testable guarantees on representational change.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

模型漂移 Zero-Direction Probing SNL指标 transformer激活 理论框架
相关文章