arXiv:2508.06756v1 Announce Type: cross Abstract: Accurate, noninvasive detection of isocitrate dehydrogenase (IDH) mutation is essential for effective glioma management. Traditional methods rely on invasive tissue sampling, which may fail to capture a tumor's spatial heterogeneity. While deep learning models have shown promise in molecular profiling, their performance is often limited by scarce annotated data. In contrast, foundation deep learning models offer a more generalizable approach for glioma imaging biomarkers. We propose a Foundation-based Biomarker Network (FoundBioNet) that utilizes a SWIN-UNETR-based architecture to noninvasively predict IDH mutation status from multi-parametric MRI. Two key modules are incorporated: Tumor-Aware Feature Encoding (TAFE) for extracting multi-scale, tumor-focused features, and Cross-Modality Differential (CMD) for highlighting subtle T2-FLAIR mismatch signals associated with IDH mutation. The model was trained and validated on a diverse, multi-center cohort of 1705 glioma patients from six public datasets. Our model achieved AUCs of 90.58%, 88.08%, 65.41%, and 80.31% on independent test sets from EGD, TCGA, Ivy GAP, RHUH, and UPenn, consistently outperforming baseline approaches (p
