cs.AI updates on arXiv.org 08月12日
Using Imperfect Synthetic Data in Downstream Inference Tasks
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型在有限数据下的预测和生成能力,提出了基于广义矩估计的新方法,有效结合合成数据和真实数据,提升统计结论的可靠性。

arXiv:2508.06635v1 Announce Type: cross Abstract: Predictions and generations from large language models are increasingly being explored as an aid to computational social science and human subject research in limited data regimes. While previous technical work has explored the potential to use model-predicted labels for unlabeled data in a principled manner, there is increasing interest in using large language models to generate entirely new synthetic samples (also termed as synthetic simulations), such as in responses to surveys. However, it is not immediately clear by what means practitioners can combine such data with real data and yet produce statistically valid conclusions upon them. In this work, we introduce a new estimator based on generalized method of moments, providing a hyperparameter-free solution with strong theoretical guarantees to address the challenge at hand. Surprisingly, we find that interactions between the moment residuals of synthetic data and those of real data can improve estimates of the target parameter. We empirically validate the finite-sample performance of our estimator across different regression tasks in computational social science applications, demonstrating large empirical gains.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大语言模型 有限数据 统计结论 合成数据 计算社会科学
相关文章