cs.AI updates on arXiv.org 08月12日
Efficient Contextual Preferential Bayesian Optimization with Historical Examples
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种无需专家参与的多目标优化方法,通过利用专家知识、历史案例和效用空间粗略信息,减少样本需求。方法在四个领域表现优异,即使面对现实中的偏差样本和有限专家输入也能表现出色。

arXiv:2208.10300v3 Announce Type: replace-cross Abstract: State-of-the-art multi-objective optimization often assumes a known utility function, learns it interactively, or computes the full Pareto front-each requiring costly expert input.~Real-world problems, however, involve implicit preferences that are hard to formalize. To reduce expert involvement, we propose an offline, interpretable utility learning method that uses expert knowledge, historical examples, and coarse information about the utility space to reduce sample requirements. We model uncertainty via a full Bayesian posterior and propagate it throughout the optimization process. Our method outperforms standard Gaussian processes and BOPE across four domains, showing strong performance even with biased samples, as encountered in the real-world, and limited expert input.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多目标优化 专家知识 效用学习
相关文章