cs.AI updates on arXiv.org 08月12日
Reviewing Clinical Knowledge in Medical Large Language Models: Training and Beyond
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文综述了将临床知识嵌入LLMs的训练、知识图谱支持及检索增强生成等不同方法,评估了学术与工业界模型的差异,并提出了相关挑战。

arXiv:2502.20988v2 Announce Type: replace Abstract: The large-scale development of large language models (LLMs) in medical contexts, such as diagnostic assistance and treatment recommendations, necessitates that these models possess accurate medical knowledge and deliver traceable decision-making processes. Clinical knowledge, encompassing the insights gained from research on the causes, prognosis, diagnosis, and treatment of diseases, has been extensively examined within real-world medical practices. Recently, there has been a notable increase in research efforts aimed at integrating this type of knowledge into LLMs, encompassing not only traditional text and multimodal data integration but also technologies such as knowledge graphs (KGs) and retrieval-augmented generation (RAG). In this paper, we review the various initiatives to embed clinical knowledge into training-based, KG-supported, and RAG-assisted LLMs. We begin by gathering reliable knowledge sources from the medical domain, including databases and datasets. Next, we evaluate implementations for integrating clinical knowledge through specialized datasets and collaborations with external knowledge sources such as KGs and relevant documentation. Furthermore, we discuss the applications of the developed medical LLMs in the industrial sector to assess the disparity between models developed in academic settings and those in industry. We conclude the survey by presenting evaluation systems applicable to relevant tasks and identifying potential challenges facing this field. In this review, we do not aim for completeness, since any ostensibly complete review would soon be outdated. Our goal is to illustrate diversity by selecting representative and accessible items from current research and industry practices, reflecting real-world situations rather than claiming completeness. Thus, we emphasize showcasing diverse approaches.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 临床知识 知识图谱 检索增强生成 医疗应用
相关文章