cs.AI updates on arXiv.org 08月12日
Network-Specific Models for Multimodal Brain Response Prediction
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种针对复杂多模态电影脑响应预测的网络特定方法,通过Yeo 7网络分区,将大脑分为四个功能网络集群,并训练独立的多层感知器模型。该方法显著提高了预测准确性,在Algonauts Project 2025 Challenge中排名第八。

arXiv:2508.06499v1 Announce Type: cross Abstract: In this work, we present a network-specific approach for predicting brain responses to complex multimodal movies, leveraging the Yeo 7-network parcellation of the Schaefer atlas. Rather than treating the brain as a homogeneous system, we grouped the seven functional networks into four clusters and trained separate multi-subject, multi-layer perceptron (MLP) models for each. This architecture supports cluster-specific optimization and adaptive memory modeling, allowing each model to adjust temporal dynamics and modality weighting based on the functional role of its target network. Our results demonstrate that this clustered strategy significantly enhances prediction accuracy across the 1,000 cortical regions of the Schaefer atlas. The final model achieved an eighth-place ranking in the Algonauts Project 2025 Challenge, with out-of-distribution (OOD) correlation scores nearly double those of the baseline model used in the selection phase. Code is available at https://github.com/Corsi01/algo2025.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

脑响应预测 网络聚类 多层感知器 Yeo 7网络 Algonauts Project
相关文章