cs.AI updates on arXiv.org 08月12日
Deep Reinforcement Learning with anticipatory reward in LSTM for Collision Avoidance of Mobile Robots
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于短期预测的机器人碰撞风险预测方法,通过LSTM模型预测机器人位置,并使用DQN动态调节奖励,减少碰撞次数,提高系统稳定性。

arXiv:2508.07941v1 Announce Type: new Abstract: This article proposes a collision risk anticipation method based on short-term prediction of the agents position. A Long Short-Term Memory (LSTM) model, trained on past trajectories, is used to estimate the next position of each robot. This prediction allows us to define an anticipated collision risk by dynamically modulating the reward of a Deep Q-Learning Network (DQN) agent. The approach is tested in a constrained environment, where two robots move without communication or identifiers. Despite a limited sampling frequency (1 Hz), the results show a significant decrease of the collisions number and a stability improvement. The proposed method, which is computationally inexpensive, appears particularly attractive for implementation on embedded systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LSTM 机器人 碰撞风险预测 DQN 嵌入式系统
相关文章