cs.AI updates on arXiv.org 08月12日
HGMF: A Hierarchical Gaussian Mixture Framework for Scalable Tool Invocation within the Model Context Protocol
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为HGMF的层次高斯混合框架,用于在大型工具库中高效选择工具,通过语义空间映射和概率剪枝方法,提高选择准确率并降低计算成本。

arXiv:2508.07602v1 Announce Type: new Abstract: Invoking external tools enables Large Language Models (LLMs) to perform complex, real-world tasks, yet selecting the correct tool from large, hierarchically-structured libraries remains a significant challenge. The limited context windows of LLMs and noise from irrelevant options often lead to low selection accuracy and high computational costs. To address this, we propose the Hierarchical Gaussian Mixture Framework (HGMF), a probabilistic pruning method for scalable tool invocation. HGMF first maps the user query and all tool descriptions into a unified semantic space. The framework then operates in two stages: it clusters servers using a Gaussian Mixture Model (GMM) and filters them based on the query's likelihood. Subsequently, it applies the same GMM-based clustering and filtering to the tools associated with the selected servers. This hierarchical process produces a compact, high-relevance candidate set, simplifying the final selection task for the LLM. Experiments on a public dataset show that HGMF significantly improves tool selection accuracy while reducing inference latency, confirming the framework's scalability and effectiveness for large-scale tool libraries.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

HGMF 工具选择 语义空间 高斯混合模型
相关文章