cs.AI updates on arXiv.org 08月12日
POEX: Towards Policy Executable Jailbreak Attacks Against the LLM-based Robots
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了LLM机器人面临的安全风险,分析了传统破解方法在机器人场景下的适用性,并提出了一种新的破解框架POEX,同时提出了基于提示和模型的防御策略。

arXiv:2412.16633v3 Announce Type: replace-cross Abstract: The integration of LLMs into robots has witnessed significant growth, where LLMs can convert instructions into executable robot policies. However, the inherent vulnerability of LLMs to jailbreak attacks brings critical security risks from the digital domain to the physical world. An attacked LLM-based robot could execute harmful policies and cause physical harm. In this paper, we investigate the feasibility and rationale of jailbreak attacks against LLM-based robots and answer three research questions: (1) How applicable are existing LLM jailbreak attacks against LLM-based robots? (2) What unique challenges arise if they are not directly applicable? (3) How to defend against such jailbreak attacks? To this end, we first construct a "human-object-environment" robot risks-oriented Harmful-RLbench and then conduct a measurement study on LLM-based robot systems. Our findings conclude that traditional LLM jailbreak attacks are inapplicable in robot scenarios, and we identify two unique challenges: determining policy-executable optimization directions and accurately evaluating robot-jailbroken policies. To enable a more thorough security analysis, we introduce POEX (POlicy EXecutable) jailbreak, a red-teaming framework that induces harmful yet executable policy to jailbreak LLM-based robots. POEX incorporates hidden layer gradient optimization to guarantee jailbreak success and policy execution as well as a multi-agent evaluator to accurately assess the practical executability of policies. Experiments conducted on the real-world robotic systems and in simulation demonstrate the efficacy of POEX, highlighting critical security vulnerabilities and its transferability across LLMs. Finally, we propose prompt-based and model-based defenses to mitigate attacks. Our findings underscore the urgent need for security measures to ensure the safe deployment of LLM-based robots in critical applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM机器人 安全风险 破解方法 防御策略 POEX框架
相关文章